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APPENDIX A: DATA AND EMPIRICAL FACTS

The main analysis of the paper is focussed on loans with an initial loan-to-value (LTV)

ratio above 95% for the substantive reasons explained in section 1.1 of the paper. This

appendix shows that the general empirical patterns concerning the rise in default rates

and relatively stable loan characteristics at origination across cohorts extend to other

loans with lower LTVs as well. In other words the full sample exhibits broadly the same

dynamics across cohorts than the sample of highly leveraged borrowers analysed in the

paper, though there are of course various level differences.

Figure A1 presents the observed cumulative default rates for different loan cohorts

for the full sample of loans with all possible initial LTVs. Of course the data still refers

to prime, fixed-rate, 30-years mortgages as in the main text. Though the level of default

rates is in general somewhat lower than for the sample of highly leveraged borrowers, the

rise in default rates follows a very similar pattern.

Figure A1: Cumulative Default Rates in the Full Sample

0 20 40 60 80 100
0

2

4

6

8

10

12

14

months since origination

cu
m

u
la

ti
ve

 d
ef

au
lt

 r
at

e 
in

 %

2002
2003

2004

2005

2006
2007

2008

Evidence on average loan characteristics at origination for different cohorts for the full

sample are presented in Table A1. The observed pattern is similar to the one for highly

leveraged borrowers in the main text. Average FICO credit scores are almost constant

across cohorts. The average loan-to-value ratio changes a bit more across cohorts than

for the above 95% LTV sample. But surprisingly in the full sample many of the later
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cohorts even have a lower average LTV than the first cohort. The dynamic pattern of

mortgage rates and debt-to-income (DTI) ratios is very similar to the sample in the main

text. Again changes in average mortgage rates are not closely correlated with the increase

in default rates, but average DTIs at origination increase somewhat over time.

Table A1: Average Loan Characteristics at Origination by Loan Cohort for the Full
Sample

Cohort 2002 2003 2004 2005 2006 2007 2008 All

LTV in % 77.9 75.1 75.7 73.8 74.8 76.4 78.4 76.0
FICO score 714 714 712 716 712 710 716 714
Mortgage rate in % 6.7 5.9 6.0 6.0 6.6 6.5 6.2 6.2
DTI in % 34 37 36 37 38 39 38 37

These empirical facts show that the dynamics of default rates and loan characteris-

tics across cohorts are very similar in the full and the more restricted sample. This is

evidence against the considered sample being somehow special and suggests that sev-

eral of the drawn conclusions may well extend to prime, fixed-rate, 30-years mortgages

more generally. Furthermore, in section B.4 below I show explicitly that under plausi-

ble assumptions on second mortgages the main conclusions of the reduced-form exercise

generalize to loans with an initial LTV of the first mortgage between 75% and 84%.

At least for the prime mortgage market the facts documented in this section are

prima facie evidence against explanations that emphasize the role of a deterioration in

lending standards or increased borrower leverage for the rise in default rates like Corbae

and Quintin (2015). For the full sample I have also conducted an additional analysis of

compositional changes with respect to initial LTVs. For this purpose I grouped all loans

with respect to their initial LTV into 10 bins with a width of 10 percentage points (the two

exceptions are the first bin with all LTVs between 1−14% and the last bin with all LTVs

above 95%). Using the observed default rates of each of these bins for each cohort and

the actual LTV composition of each cohort I then computed two counterfactual aggregate

default rates for all cohorts, i.e. the equivalent to Figure A1. In the first counterfactual

scenario I keep the default rates of each LTV bin fixed at their observed level of the
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2002 cohort and only vary the LTV composition across cohorts according to the actual

data. In the second counterfactual I only vary the default rates of each bin across cohorts

as observed in the actual data, but counterfactually keep the LTV composition fixed

as it is observed for the 2002 cohort. This decomposition analysis shows that for all

practical purposes the aggregate default dynamics across cohorts witnessed in Figure A1

are entirely driven by increases in default profiles for each initial LTV bin and not by

changes in the composition of initial LTVs. The same conclusion applies if one uses a

cohort other than the 2002 one for fixing one of the two margins in the counterfactual

calculations. These results reinforce the conclusion in the main paper that the fall in

house prices and not compositional effects are key for understanding the rise in default

rates at least for prime fixed-rate mortgages during the crisis.

APPENDIX B: REDUCED FORM MODELS

B.1 Estimation Procedure

The model parameters are estimated by a simulated method of moments procedure. Let

θ stand in for the parameter to be estimated in the respective model. The idea of the

estimation is to choose θ such that the cumulative default rates for the 2002 cohort

simulated from the model match as well as possible those observed in the data. Collect

the variables dit in one vector Di = [di1, . . . , diT ]
′ for each individual. The mean of

this vector D = 1

N

∑N

i=1
Di represents the empirically observed cumulative default rate.

The expected value of Di is E[Di] = D(θ) and denote the expected value evaluated by

simulation of S individuals from the model by D̃(θ). The deviation of the model from the

data is then given by G(θ) = D − D̃(θ). The simulated method of moment estimator of

θ minimizes G(θ)′WG(θ) where W is a weighting matrix. I weight all moments equally

by using an identity matrix as the weighting matrix. θ is then estimated by minimizing

a least squares criterion function given by

T∑

t=1

(
dt − d̃t(θ)

)2
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where dt and d̃t(θ) are the t-th element in the vectors D and D̃(θ), respectively. Here,

d̃t(θ) is evaluated using a frequency simulator such that d̃t(θ) =
1

S

∑S

j=1
d̃jt(θ) and d̃jt(θ)

represents the outcome for period t of applying the decision rules to the drawn history j

of the underlying shocks. The minimization problem is solved by a grid search algorithm.

B.2 Robustness Checks

This section reports a battery of robustness checks that were performed to scrutinize

the reduced form results. I find that the results are robust across all the modifications

considered here. For brevity I do not report the graphs corresponding to Figure 3 for all

these checks. But these are available upon request.

Instead of estimating the models on the 2002 cohort with low default rates, I also

estimate them on the 2008 cohort with very high default rates. This does not affect the

good fit of the shock model. However, now the threshold model greatly undershoots the

default rates of early cohorts and also still overshoots the 2006 and 2007 cohort. Thus,

the comparison across models is unaffected. I have also used the 2003 and 2005 cohorts

to estimate the models and always found the same results across the two models.

Another robustness check replaces the out-of-sample test with an in-sample test. Here,

I estimate the two models on all cohorts and then examine the fit within that sample.

This exercise is informative on the best possible fit both models can give to the data.

These results are thus worth to report in more detail. The estimated parameters are

then −15.9% for φ and 1.36% for ψ, and the results are shown in Figure B1. The

threshold model still has considerable problems to match the data even under these most

favorable circumstances. It generally undershoots earlier cohorts and the early months

after origination for all cohorts and at the same time still overshoots the late months of

the 2006 and 2007 cohorts. In contrast, the shock model gives a very good fit to the data.

The conclusions across models are essentially unchanged.

I also examine the role of the variation in mortgage rates and the distribution of loan-

to-value ratios across cohorts in three alternative specifications. In the first specification,

I keep the within cohort LTV distribution fixed across cohorts according to the average
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Figure B1: In-Sample Fit of the Two Models

(a) Threshold Model
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(b) Shock Model
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Notes : Solid lines: model. Dashed lines: data.

frequency. The second specification abstracts from within cohort heterogeneity such that

everyone has the same LTV according to the respective within cohort average. The third

specification is the same as the second except that the LTV and mortgage rate are not

varied across cohorts. All these changes have very modest effects on both models and

leave the conclusions across models unaffected. This implies that the double-trigger model

attributes the rise in default rates to the variation in aggregate house prices and not the

changes in contract characteristics across cohorts. It also suggests that abstracting from

this heterogeneity across cohorts in the structural model is not too restrictive.

In section 2.4 of the paper, it was assumed that the individual house price shocks

are normally distributed. The major argument supporting this choice is that by the

central limit theorem the mean of individual shocks converges asymptotically to a normal

distribution anyway. However, since the analysis also covers periods where t is still

small, I perform an additional check here. Instead of using a normal distribution for the

individual shocks I specify them as being uniformly distributed on the interval [−bt, bt].

The parameter bt is then chosen such that the variance of the uniformly distributed shock

in period t in the respective census division is identical to the one used in the standard

framework. I find that the results are almost identical.

Another potential concern is that the simplicity of the presented reduced-form models

with only one constant parameter somehow biased the results against the frictionless
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option model. There is also no strong reason why the default threshold parameter φ and

default shock probability ψ should be constant over the course of a loan. It turns out

that the results are robust to changing this assumption. As a check I have performed

a scenario where the respective default parameter depends fully on the month since

origination t. The constant parameters in the model are then replaced with φt and ψt

that are allowed to differ each period from t = 1, . . . , T when fitting the models to the

2002 cohort. Under these circumstances, both models almost perfectly match the 2002

cohort. The cumulative default rates simulated for the other cohorts then inherit the

non-smoothness of the first differences of the cumulative default rate of the 2002 cohort.

However, subject to that qualification the conclusions on the out-of-sample fit remain

essentially unchanged. The threshold model still greatly overshoots the later cohorts.

The shock model generates default rates comparable in magnitude to the benchmark.

B.3 Using an alternative definition of default

In this section, I use a different definition of default. Instead of using a 60 or more days

definition of default as in the main text, I now consider a loan to be in default once it is at

least 120 days past due.1 This is a more demanding definition and by all accounts being

120 days past due is considered as a very serious delinquency. This change of definition

affects the levels of the data on cumulative default rates which is used to estimate and

test the models. The level of default rates is lower now. However, the broad dynamics

across cohorts are similar to the ones analyzed in the main text.

Again, I estimate both reduced form models on the 2002 cohort and use the remaining

cohorts to test the estimated models. For the threshold model this yields an estimate of

φ of −11.9% and for the shock model ψ is estimated as 0.83%. The results are reported

in Figure B2. These are qualitatively very similar to the ones of the main text and the

conclusions across models are unchanged. Though one can debate what is the appropriate

definition of default, I conclude from this exercise that this issue is not key for my results.

Furthermore, I have also investigated the effect of using a definition of default that

1. Now I backdate the period of default by 3 months to capture the time when the first payment has
been missed.
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Figure B2: Using an alternative definition of default (120+ days)

(a) Threshold Model
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(b) Shock Model
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Notes : Solid lines: model. Dashed lines: data.

requires a loan to be in foreclosure. This also generates similar results (which are available

upon request) and does not resolve the empirical problems of a frictionless option-model

documented in section 2 of the paper.

B.4 Extension to lower Loan-to-Value Ratios

The paper is focussed on loans with an LTV above 95% because these borrowers should

be least likely to have a second mortgage on their home, cf. the discussion in section

1.1 of the paper. The question arises whether the results of the paper also generalize to

loans with a lower LTV. This section provides some evidence on this by repeating the

reduced-form analysis of section 2 for loans with an LTV of the first mortgage between

75% and 84%. Due to the discussed data problems this section is necessarily somewhat

tentative. Nevertheless, some very interesting results emerge.

First, I take the data for the loans with a LTV of the first mortgage between 75% and

84% at face value and assume that no one has a second mortgage. Accordingly, the LTV

varies within cohorts in steps of one percentage point between 75% and 84%. Changes

to the distribution of loans over this support across cohorts observed in the mortgage

data are again taken into account. The mortgage rate is again kept constant within a

cohort and set equal to the respective cohort average. When estimating the models on

the 2002 cohort, I find that neither of the two models can capture this data well. Even
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for the most extreme parameter values of φ = 0 and ψ = 1, both models undershoot the

cumulative default rate of the 2002 cohort substantially for at least the first 60 months

after origination. The reason is that the equity buffer generated by the down-payment

is substantial for these borrowers. Because the 2002 cohort faced strongly increasing

average house prices immediately after origination, too few borrowers in the simulation

experience negative equity compared to observed default rates. It is important that both

models fail if we take this data at face value. One can draw two possible conclusions

from these results. Either we need a completely new theory of default for these loans

or it is crucial to take second mortgages into account. I present evidence on the second

explanation next.

Elul et al. (2010) report that 26% of all borrowers have a second mortgage and this

adds on average 15% to the combined LTV. However, they neither report a breakdown

of these statistics by the LTV of the first mortgage nor when borrowers take out the

second mortgage. Faced with this situation, I model a very simple form of intra-cohort

heterogeneity taking these estimates of the frequency and size of second mortgages into

account. I assume that 74% of borrowers have only one mortgage with a distribution of

LTVs as in the mortgage data. However, 26% of borrowers in each cohort independently

of the LTV of the first mortgage also have a second mortgage adding 15% to the combined

LTV. This implies that the support of the LTV distribution is expanded and now also

includes values between 90% and 99%. It is assumed that borrowers got the second

mortgage at the same time as the first one and pay the same mortgage rate on both.

Admittedly, these are very crude assumptions. This exercise can only provide preliminary

evidence until better data is available and should be regarded with considerable caution.

For this setup the reduced-form models are estimated again on the 2002 cohort. This

yields estimates of φ = −7.8% and ψ = 2.25%. The estimated models are again tested

on their ability to predict out-of-sample. Figure B3 presents the results for all cohorts.

The threshold model overshoots the data again. In contrast, the shock model provides

an excellent fit to the data. Thus, the double-trigger theory also provides a better expla-

nation for this data under the maintained assumptions on second mortgages. Due to the
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discussed data problems I would personally put a lower weight on these results compared

to the benchmark results. However, these results are at least suggestive that the main

conclusions on the relative merit of the two theories may well extend to loans with a

lower LTV.

Figure B3: Results for borrowers with a first mortgage LTV of 75 − 84% taking second
mortgages into account

(a) Threshold Model
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(b) Shock Model
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Notes : Solid lines: model. Dashed lines: data.

APPENDIX C: STRUCTURAL MODEL

C.1 Value Functions

The state variables of the optimization problem for an owner are liquid wealth Xt =

At + Yt, employment status Lt, house price Pt and time t. The choice variables are

consumption Ct and the mortgage termination choice. The value function of an owner

V o(.) can then be written as

V o(Xt, Lt, Pt, t) = max

{
V s(Xt, Lt, Pt, t), V

r(Xt + Pt −
Mt

Πt

, Lt, t), V
r(Xt, Lt, t)

}

which reflects the optimal choice between staying in the house with value V s(Xt, Lt, Pt, t),

selling with value V r(Xt + Pt −
Mt

Πt

, Lt, t) and defaulting with value V r(Xt, Lt, t). Selling

and defaulting involve a permanent transition to the rental market. In case of staying
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the value V s(Xt, Lt, Pt, t) is given by

V s(Xt, Lt, Pt, t) = max
Ct

{
C

1−γ
t

1− γ
+ θ + βEt [V

o(Xt+1, Lt+1, Pt+1, t+ 1)]

}

s.t. Xt+1 = (1 + r)

(
Xt −

m

Πt

+ τrm
Mt

Πt

− Ct

)
+ Yt+1

Ct ≤ Xt −
m

Πt

+ τrm
Mt

Πt

.

The value function of a renter V r(Xt, Lt, t) is given by

V r(Xt, Lt, t) = max
Ct

{
C

1−γ
t

1− γ
+ βEt [V

r(Xt+1, Lt+1, t+ 1)]

}

s.t. Xt+1 = (1 + r) (Xt − R− Ct) + Yt+1

Ct ≤ Xt − R.

C.2 Dependence on Preference Parameters

This section explores how the model depends on the predetermined preference parameters.

Specifically, I compute results for alternative parameter values for β and γ in order to get

an idea how the model behaves in different parts of the parameter space. The benchmark

preference parameter values are β = 0.9 and γ = 5.

First, I consider alternative values of β equal to 0.85 and 0.95. For these value of β,

the parameter θ is then reestimated in order to fit the 2002 cohort. This yields values

of θ of 0.39 and 0.16 respectively. The results of these experiments are compared to the

benchmark results in Figure C1.

Figure C1: Sensitivity to Preference Parameter β
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(b) β = 0.9
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(c) β = 0.95
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Notes : Solid lines: model. Dashed lines: data.

Next, I consider alternative values of γ equal to 2 and 8. θ is then estimated as 0.06 and
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0.64 respectively. Figure C2 compares these alternative calibrations to the benchmark.

Figure C2: Sensitivity to Preference Parameter γ

(a) γ = 2

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

months since origination

cu
m

u
la

ti
ve

 d
ef

au
lt

 r
at

e 
in

 %

2002
2003

2004

2005

2006

2007

2008

(b) γ = 5

0 20 40 60 80 100
0

5

10

15

20

months since origination

cu
m

u
la

ti
ve

 d
ef

au
lt

 r
at

e 
in

 %

2002

2003

2004

2005

20062007

2008

(c) γ = 8
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Notes : Solid lines: model. Dashed lines: data.

These results show that the model works as well or better than in the benchmark

calibration for higher values of γ and/or lower values of β. These parameter changes make

the agent less willing to substitute intertemporally and/or more impatient to consume

today. This worsens the liquidity problem caused by unemployment. The model can

only feature double-trigger behavior when being employed and being unemployed are

sufficiently different. In contrast, for lower values of γ and higher values of β temporary

income reductions can more easily be smoothed out. The model then implies that a

sizeable portion of employed agents default in all cohorts. This brings the model too

close to a frictionless option model and the model then inherits all the problems of such

a specification witnessed already in section 2 of the paper.

C.3 Details on the Role of a Direct Utility Benefit

In this section, I show that versions of the model which abstract from a direct utility

benefit of living in the bought house are excessively sensitive to changes in aggregate

house prices. As an illustration I conduct simulations of the model where the utility flow

parameter θ is set to 0. I then adjust the discount factor β to again match the default

rates of the 2002 cohort for θ = 0. Figure C3 presents these results for the benchmark

value of the CRRA coefficient γ = 5, but also for values of γ of 2 and 8. Each of those

experiments is associated with a different value of β. These results confirm the key role of

including a direct utility benefit of living in the bought house in order to prevent employed

and not currently liquidity-constrained agents from defaulting when house prices decline
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strongly. Without this feature the model cannot accurately capture the sensitivity of

default rates to aggregate house prices.

Figure C3: Performance of the model without a direct utility benefit of living in the
bought house (θ = 0) for different values of γ

(a) γ = 2, β = 0.947
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(b) γ = 5, β = 0.997
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(c) γ = 8, β = 1.042
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Notes : Solid lines: model. Dashed lines: data.

C.4 Role of Inflation

In this section, I show that the mortgage tilt effect caused by inflation plays an important

role for the performance of the model in later periods after origination. In the bench-

mark calibration, the inflation rate is set to 2.4%, which is the average value during the

simulation period (2002-2010). In order to document the sensitivity of default rates to

the inflation rate I investigate an alternative calibration where π is set ad-hoc to 1%.

This alternative calibration is only meant to be an illustration how default decisions are

affected when borrowers either expect the inflation rate to be a bit lower (1.4% lower)

during the simulation period and the future than it was during these years, or in some

other way underestimate the mortgage tilt effect. Unfortunately I have no data on how

large such a deviation of borrower expectations from observed inflation may have been

in reality, which implies that I can only look at an ad-hoc scenario. All other parameters

are unchanged, but θ is reestimated at a value of 0.44 to fit the 2002 cohort.

Figure C4 presents the results of this exercise. The fit of the model improves in the

later period after origination relative to the benchmark results. This shows that the

strength of the mortgage tilt effect is responsible for the problems of the model in the

main text to capture default decisions in later periods after origination.

Using this alternative calibration I have also repeated the policy analysis of section 6
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Figure C4: Performance of the Model for a Lower Inflation Rate
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Notes : Solid lines: model. Dashed lines: data.

of the paper. This allows to check how the policy results change in a model that captures

the data even better than the benchmark (but admittedly makes an ad-hoc assumption

on the inflation rate). The absolute costs of both policies tend to increase a bit relative to

the benchmark and the relative cost of the bailout to lenders also increases. Bailing out

lenders is then between 8.6 and 11.2 times more expensive than subsidizing homeowners

using this alternative calibration. Thus, the conclusions across policies are robust or even

strengthened relative to the benchmark calibration.

C.5 Using an alternative definition of default

This section reports the results for the structural model when the 120 days definition

instead of the 60 days definition is used to measure default empirically as in section B.3.

All other procedures are as in the main text. The estimate of θ is then 0.32. Figure

C5 reports the results for all cohorts. The fit of the model to this data is qualitatively

similar to the one of the main text that uses a 60 days default definition. The results of

the policy analysis are also essentially unchanged and bailing out lenders is found to be

between 8.7 and 11.2 times more expensive than subsidizing homeowners. This analysis

shows that the main results of the structural model are robust to using an alternative

reasonable definition of default.
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Figure C5: Model Results for the 120+ Days Default Definition
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Notes : Solid lines: model. Dashed lines: data.

C.6 A Structural Single-Trigger Model

This section investigates a structural single-trigger model in the spirit of the frictionless

option theoretic literature. The aim is to confirm that the conclusions on the relative merit

of the two theories drawn in the reduced form section 2 also carry over to a comparison

of structural models of these theories.

For this purpose, it is convenient that the structural double trigger model of sections

3 and 4 in fact nests a single-trigger model if one suitably modifies some model parame-

ters. The single-trigger paradigm relies on the assumption that borrowers have access to

perfect and complete financial markets such that they can perfectly insure against income

fluctuations. Accordingly, mortgage default decisions are unaffected by income fluctua-

tions and liquidity problems. The structural model nests such a case when the following

changes to model parameters are made. The net replacement rate in case of unemploy-

ment ρ is set to 1 such that income is identical in the employed and unemployed state.

Given the actual replacement rate of unemployment insurance and the unemployment

rate implied by the job separation and finding rates from the benchmark calibration,

this insurance costs about 2% of net income when employed. Accordingly, employed net

income (1− τ)Y0 is lowered by 2% such that it is net of insurance fees, which is achieved

by resetting the debt to income ratio to a slightly higher value of DTI = 0.4085. These
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modifications are equivalent to the borrower buying insurance against the part of income

risk not covered by the public unemployment insurance system. In the resulting model,

default is no longer driven by employment status because income does not vary across

employment states. The second modification is to delete the borrowing constraint of

equation (13) from the model such that it features a perfect credit market for unsecured

credit. In practice this is achieved by changing equation (13) to At+1 ≥ −ξ and then

setting ξ to a large number instead of zero as in the benchmark calibration. Specifically,

I set ξ equal to five times annual net income and confirm that during the simulation

the optimal asset path chosen by borrowers remains far away from this constraint. The

other features, parameters and initial conditions of the model remain the same as in

the benchmark model and calibration. Thus, the structural single trigger model is put

as much as possible on an equal footing with the structural double trigger model. The

direct utility benefit parameter θ is then estimated at a value of −0.035 to match the

cumulative default rate of the 2002 cohort, which this model specification also matches

very well.

Figure C6 presents the resulting fit of the structural single-trigger model to all cohorts.

The model strongly overpredicts the rise in default rates. Its performance is broadly

comparable to the one of the reduced-form single-trigger model. When comparing the

structural single and double-trigger models to each other, one again finds that the double-

trigger model explains the data much better than the single trigger model. The impression

from visually inspecting Figure C6 and Figure 7 of the main text is confirmed by simple

measures of goodness of fit of the model predictions to the data. For instance the root

mean squared error (mean absolute error) of the out-of-sample forecast is 3.5 (2.8) times

higher for the structural single-trigger than for the structural double-trigger model. Thus,

this exercise using structural models confirms the reduced form results on the relative

merit of the two theories.
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Figure C6: Performance of a Structural Single-Trigger Model
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