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Overview

This appendix of our paper, “Demographic Change, Human Capital and Welfare”, contains
further material that could not be included in the paper due to space limitations. It is organized
as follows. Section A contains the formal equilibrium definition. Section B provides more results
on the fit of our model to observed life-cycle profiles of hours and wages, the implied labor-
supply elasticities of our model, additional results on predicted aggregate variables during the
demographic transition as well as the associated welfare effects and a sensitivity analysis. Our
population model is explained in Section C. Details on our computational procedures can be
found in Section D.

A Equilibrium

Denoting current period/age variables by x and following period/age variables by x′, a household
of age j solves the maximization problem at the beginning of period t

V (a, h, t, j) = max
c,ℓ,e,a′,h′,s′

{u(c, 1− ℓ− e) + φβV (a′, h′, s′, t+ 1, j + 1)} (1)

subject to wnt,j = ℓt,jht,jwt(1− τt),

at+1,j+1 =

{
(at,j + trt)(1 + rt) + wnt,j − ct,j if j < jr

(at,j + trt)(1 + rt) + pt,j − ct,j if j ≥ jr,
(2)

ht+1,j+1 = ht,j(1− δh) + ξ(ht,jet,j)
ψ ψ ∈ (0, 1), ξ > 0, δh ≥ 0, (3)

and the constraints ℓ ∈ [0, 1), e ∈ [0, 1).
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Definition 1. Given the exogenous population distribution and survival rates in all
periods {{Nt,j, φt,j}Jj=0}Tt=0, an initial physical capital stock and an initial level of average hu-
man capital, {K0, h̄0}, and an initial distribution of assets and human capital, {at,0, ht,0}Jj=0,
a competitive equilibrium of the economy is defined as a sequence of individual variables
{{ct,j, ℓt,j, et,j, at+1,j+1, ht+1,j+1, st+1,j+1}Jj=0}Tt=0, sequences of aggregate variables {Lt, Kt+1, Yt}Tt=0,
government policies {ρt, τt}Tt=0, prices {wt, rt}Tt=0 and transfers {trt}Tt=0 such that

1. given prices, bequests and initial conditions, households solve their maximization problem,
as described above,

2. interest rates and wages are paid their marginal products, i.e., wt = (1 − α) Yt
Lt

and rt =

α Yt
Kt

− δ,

3. per-capita transfers are determined by

trt =

∑J
j=0 at,j(1− φt−1,j−1)Nt−1,j−1∑J

j=0Nt,j

, (4)

4. government policies are such that the budget of the social-security system is balanced every
period, i.e., Equation (4) in our main text holds ∀t, and household pension income is
given by pt,j = ρtwt+jr−jh̄t+jr−j

st,j
jr−1

,

5. markets clear every period:

Lt =

jr−1∑
j=0

ℓt,jht,jNt,j (5a)

Kt+1 =
J∑
j=0

at+1,j+1Nt,j (5b)

Yt =
J∑
j=0

ct,jNt,j +Kt+1 − (1− δ)Kt. (5c)

Definition 2. A stationary equilibrium is a competitive equilibrium at which per-capita variables
grow at the constant rate of 1+ḡA and aggregate variables grow at the constant rate (1+ḡA)(1+n).

B Further Results

B.1 Backfitting

Figure 1 presents the fit of our model to cross-sectional hours data from McGrattan and Rogerson
(2004) for the years 1970, 1980, 1990 and 2000. We observe that our model does a very good
job of matching the data along this dimension from 1980 onwards.

A comparison between wage profiles observed in PSID data and the model is shown in Figure
2. The fit of our model is very good in 1970 and 1980 and still broadly consistent with the data
in 1990 and 2000.
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Figure 1: Labor Supply
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(b) 1980
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(c) 1990

20 25 30 35 40 45 50 55 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Age

H
o

u
rs

 W
o

rk
ed

Hours Worked in 1990

 

 

model
data

(d) 2000
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Notes: Model and data profiles for labor supply. Hours data are normalized by 76 total hours.

Data Sources: Based on hours worked data from the Decennial Censuses obtained from McGrattan

and Rogerson (2004).
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Figure 2: Wages

(a) 1970
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(b) 1980
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(c) 1990
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(d) 2000
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Notes: Model and data profiles for wages. The data are given as a centered average of five subsequent

PSID samples.

Data Sources: Based on PSID wage data.
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B.2 Labor-Supply Elasticities

Because agents’ human-capital investments do not only depend on changes in relative returns
but also on the extent of labor-supply adjustments, realistic labor-supply elasticities are key for
our analysis. First, we compute the Frisch (or λ-constant) elasticity of labor supply that holds
the marginal utility of wealth constant. We do so using the standard formula. In the context
of our model, this means holding time invested in human-capital formation constant. It is then
given by

ϵjℓ,w =
1− ϕ(1− σ)

σ

1− ℓj − ej
ℓj

, (6)

see Browning, Hansen, and Heckman (1999) for a derivation. In our model, the Frisch elasticity
depends on the amount of leisure and labor supply and therefore is age-dependent. As a con-
sequence of the hump-shaped labor supply, the Frisch labor-supply elasticity is u-shaped over
the life-cycle. During the years 1960-1995, we find that agents between ages 25 and 50 have
a labor-supply elasticity between 0.8 and 1.0, while it is higher for younger and older agents.
For agents aged 30-50 (20-60), the average Frisch elasticity is approximately 0.8 (1.0), while
across all agents, the average is approximately 1.3. If we aggregate the u-shaped micro-Frisch
elasticities to an hours-weighted (“macro”) Frisch elasticity,

We also report a Frisch labor-supply elasticity that allows time invested in human-capital
formation to vary. In the spirit of the Frisch elasticity concept, we hold the marginal utility of
human capital constant in addition to the marginal utility of wealth. This Frisch elasticity is
then given by

ϵ̃jℓ,w =
1− ϕ(1− σ)

σ

1− ℓj − ej
ℓj

+
1

1− ψ

ej
ℓj
. (7)

As usual, an interior solution is assumed here. If we use this concept, then the labor-supply
elasticity is higher because the second term is positive, i.e., agents invest less in human-capital
formation when they face a higher wage today, and the marginal utility of human capital re-
mains unchanged. Due to decreasing time invested in human-capital formation, the second term
decreases over the life-cycle. The resulting labor-supply elasticity is still u-shaped over the life-
cycle. Accordingly, during 1960-1995 for agents aged 30-50 (20-60), the resulting average Frisch
elasticity with varying time investments is around 1.3 (1.8), while across all agents, the average
is approximately 2.8. Here, the macro-Frisch elasticity is approximately 1.9 when accounting for
the differing initial labor supply across agents of different ages.

B.3 Transitional Dynamics

B.3.1 Aggregate Variables

The cumulative effect of the differences in growth rates on GDP per capita are displayed in
Figure 3. In the endogenous human-capital model with constant contribution (replacement)
rates, GDP per capita will increase by approximately 14% (10%) more until the year 2050
than it would without human-capital adjustments.
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Figure 3: Detrended GDP per Capita [Index, 2005=100]

(a) Constant Contribution-Rate Scenario
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(b) Constant Replacement-Rate Scenario
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B.3.2 Welfare Effects

Welfare of Future Generations

In our main text, we mostly analyze the welfare consequences for agents alive in 2005 and only
briefly glance at the consequences for future generations. We here examine those. Figure 4 shows
the consumption-equivalent variation for the two models and the two social-security scenarios.
Agents born into a “const τ”-world experience welfare gains of up to 1.1% and losses of up to
1.7% of lifetime consumption, depending on whether they are born before or after 2005. Even if
agents are allowed to invest in human capital, welfare losses of future generations can be quite
large if the contribution rates rise (“const ρ”). Notice, again, that in our comparison across
models, differences are not large because the positive value of human-capital adjustments is
offset by the more beneficial general- equilibrium effects in the exogenous human-capital model.
For this reason, welfare gains for some cohorts may even be slightly higher in the exogenous
human-capital model when the contribution rate is held constant.

The Value of Human-Capital Adjustments

From Figure 7 of our main text, we observe that welfare gains (and losses) for newborns are
almost identical in the endogenous and exogenous human-capital models. Detailed numbers are
provided in Table 1. The explanation for these similar welfare consequences is as follows. While
the value of human-capital adjustments is positive (see below), the increase of wages and the
associated decrease of interest rates is much stronger in the exogenous human-capital model.
As newborn households generally benefit from the combined effects of increasing wages and
decreasing returns, welfare gains from these general-equilibrium effects are higher in the exoge-
nous human-capital model. This explains why the overall welfare consequences for newborns
across models do not differ much, despite the fact that the value of human-capital adjustments
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Figure 4: Consumption Equivalent Variation of Agents born in 2005-2050

(a) Constant Contribution-Rate Scenario
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(b) Constant Replacement-Rate Scenario
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Notes: Consumption-equivalent variation (CEV) in the two social-security scenarios.

is positive.

Table 1: CEV for Generation Born in 2005 [in %]

Human Capital
Endogenous Exogenous

Const. τ (τt = τ̄) -0.1% 0.4%
Const. ρ (ρt = ρ̄) -4.4% -5.0%

Notes: CEV: consumption-equivalent variation.

Our comparison across models does not provide any information about the value of a flex-
ible adjustment of human-capital investments from the individual perspective, that is, about
the value of human-capital adjustments within the endogenous human-capital model. To ac-
complish this, we store from our computation of V̄ 2005

j (see above) the associated endogenous
time-investment profile, {e2005j }Jj=0. Next, we compute V̄ CE

t,j as the lifetime utility of agents born
at time t, age j facing constant 2005 survival rates, a sequence of equilibrium prices, transfers
and contribution (replacement) rates, as documented for the endogenous human-capital model
in the previous section, but keep the time-investment profile fixed at {e2005j }Jj=0. Corresponding
to our previous work, we then compute

gCEt,j =

(
V̄ CE
t,j

V̄ 2005
j

) 1
ϕ(1−σ)

− 1, (8)

as the consumption-equivalent variation with constant time-investment decisions. The difference
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gt,j − gCEt,j is then our measure of the value of endogenous human capital (where gt,j is the
consumption-equivalent variation with flexible time investments, as computed above).1

The value of human- capital adjustments is obviously positive and more or less monotonically
decreasing with age (because of decreasing time investments over the life-cycle). Furthermore,
for all future generations, the value of human-capital adjustments can be expected to increase
slightly because of the increasing rate of return to human-capital formation. For the sake of
brevity, we do not report these results and confine ourselves to a comparison of the value of
human-capital adjustments of newborns in 2005, that is g256,0 − gCE256,0 across social-security
scenarios. As reported in Table 2, the value of human-capital adjustments in the “const. τ”
scenario is 0.27% compared to 0.22% in the “const. ρ” scenario.

Table 2: The Value of Human-Capital Adjustments in 2005

Const. τ (τt = τ̄) 0.27%
Const. ρ (ρt = ρ̄) 0.22%

Notes: The value of human-capital adjustments is computed as gt,j − gCE
t,j .

Role of the Pension System: Agents Alive in 2005

We here provide a decomposition of our welfare results into the effects stemming from changes
in relative factor prices and transfers and those of changing pension payments. To this end,
Figure 5 shows the welfare consequences of demographic change for agents alive in 2005 from
changing factor prices alone, keeping pension payments constant. We here examine only our
scenario with constant contribution rates. Table 3 presents the maximum utility loss for agents
alive in 2005 with constant pension payments. In the exogenous human-capital model, the
maximum loss is approximately 2.7 percentage points, or almost 3 times higher than in the
endogenous human-capital model. Observe from Table 2 of our main text that, in terms of the
percentage point difference, this gain relative to the exogenous human-capital model is roughly
3.8 percentage points when pension payments adjust. By comparing these numbers, we can
therefore conclude that roughly two-thirds of the overall gain of 3.8 percentage points can be
attributed to differential changes in interest rates, wages and accidental bequests, and one-third
can be attributed to the relative rise in social-security benefits caused by the additional human-
capital formation and the accompanying increase of average wages.

Role of Survival Rates for Welfare Calculations

Thus far, we have computed the welfare effects of demographic change by holding survival rates
constant. We here present welfare results for varying survival rates. Figures 6 and 7 present
the results of these calculations. Table 4 presents the maximum utility loss for agents alive in

1To observe this more clearly, rewrite the welfare difference as gt,j − gCE
t,j =

(V̄ 2005
j )−

1
ϕ(1−σ)

(
V̄

1
ϕ(1−σ)

t,j − V̄ CE
1

ϕ(1−σ)

t,j

)
. The difference between the terms in the brackets is only due to

the fact that agents are (or are not) allowed to adjust their human capital.
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Figure 5: CEV of Agents alive in 2005 with Constant Pensions: Constant Contribution Rates
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Notes: Consumption-equivalent variation (CEV) in the constant contribution-rate scenario with con-

stant pension payments. “endog. h.c.”: endogenous human-capital model with constant pensions.

“exog. h.c.”: exogenous human-capital model with constant pensions.

Table 3: Maximum Utility Loss for Generations Alive in 2005 with Constant Pensions

Human Capital
Endogenous Exogenous

Const. τ (τt = τ̄) -1.5% -4.2%
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2005 with changing survival rates. Comparing these results to those of Figure 7 and Table
2 in our main text as well as those of Figure 4, we can conclude that holding survival rates
constant or varying them according to the underlying demographic projections does not affect
our conclusions about the welfare consequences of demographic change in our comparisons across
various scenarios.

Figure 6: CEV of Agents Alive in 2005 with changing Survival Rates

(a) Constant Contribution-Rate Scenario
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(b) Constant Replacement-Rate Scenario
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Notes: Consumption-equivalent variation (CEV) calculated with changing survival rates in the two

social-security scenarios.

Table 4: Maximum Utility Loss for Generations Alive in 2005 with changing Survival Rates

Human Capital
Endogenous Exogenous

Const. τ (τt = τ̄) -8.5% -12.1%
Const. ρ (ρt = ρ̄) -4.4% -5.4%

B.4 Sensitivity Analysis with respect to σ

We now provide a sensitivity analysis with respect to the parameter σ, the inverse of the inter-
temporal elasticity of substitution. In our benchmark model, we set σ = 2, but we now also
explore the cases of σ = 1 (log-utility) and σ = 3. We recalibrate the model when we vary σ,
such that we match the same calibration targets as in the main text.

This exercise serves two purposes. First, because σ is a predetermined parameter in our
calibration procedure, it is interesting to observe how much our results depend on our choice of
σ. Second, we want to investigate how sensitive our results are to changes of the theoretical Frisch
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Figure 7: CEV of Agents born in 2005-2050 with changing Survival Rates

(a) Constant Contribution-Rate Scenario
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(b) Constant Replacement-Rate Scenario
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Notes: Consumption-equivalent variation (CEV) calculated with changing survival rates in the two

social-security scenarios.

labor-supply elasticities in our model. Table 5 shows how varying σ generates variation in these
elasticities in the differently calibrated versions of our model.2 We observe that these experiments
generate substantial variation in labor-supply elasticities. With σ = 3 and a constant (variable)
time investment, the “macro” elasticity is approximately 15% (6%) lower than in the benchmark
calibration, while with σ = 1, it is approximately 46% (21%) higher than in the benchmark. A
limitation of this sensitivity check is, of course, that we cannot separately identify the effects of
the inverse of the inter-temporal elasticity of substitution and the Frisch labor-supply elasticity
on our results.

Table 5: Sensitivity Analysis with respect to σ: Mean Frisch Labor-Supply Elasticities during
1960-1995

Time Investment Time Investment
Constant Variable

σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3
Age 30 to 50 1.2 0.8 0.7 1.6 1.3 1.2
Age 20 to 60 1.5 1.0 0.9 2.2 1.8 1.7
All Ages 2.0 1.3 1.2 3.3 2.8 3.0
“Macro” 1.6 1.1 0.9 2.3 1.9 1.8

Figure 8 shows that the fit of our model to the observed cross-sectional profiles of consump-
tion, assets, hours and wages is very similar for all values of σ considered here. Unfortunately,

2Section B.2 explains how the Frisch labor-supply elasticity depends on σ.
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the failure of our model to match the observed consumption profile cannot be fixed by varying
σ in this way.

We next turn to the implications of the different parameterizations on the transitional dy-
namics of the macroeconomic variables. We omit the figures for the contribution and replacement
rates of the pension system because the dynamics for the alternative values of σ are basically
identical to the benchmark model. The maximum absolute deviation of the contribution rate
from the benchmark model in any year is approximately 0.6 percentage points, and for the re-
placement rate, it is 1.2 percentage points. However, for the vast majority of years, the deviations
are much smaller.

Figure 9 presents the evolution of the four major macroeconomic variables for the “const.
τ” social-security scenario, and Figure 10 does so for the “const. ρ” scenario. We observe that
for the alternative values of σ, the broad dynamics of these variables are very similar to the
benchmark model. The most significant differences are that for log-utility (σ = 1), when human
capital is exogenous, average hours increase by more, and the interest rate decreases by less than
in the benchmark calibration with σ = 2 in the years after 2020.

For the different values of σ, the welfare analysis of demographic change for agents alive in
2005 is presented in Figure 11 and Table 6. The welfare results can be viewed as an important
and convenient summary measure of all of the differences between differently parameterized
models. We find that the welfare assessment of demographic change does not depend much on
the value of σ and the comparison across models with endogenous and exogenous human capital
is largely unaffected. We thus conclude that our main quantitative result that human-capital
adjustments mitigate the macroeconomic and welfare effects of demographic change is robust to
the changes of σ we considered here.

Table 6: Sensitivity Analysis with respect to σ: Maximum Utility Loss for Generations Alive in
2005

σ = 1 σ = 2 σ = 3
Human Capital Human Capital Human Capital
Endog. Exog. Endog. Exog. Endog. Exog.

Const. τ (τt = τ̄) -8.4% -11.4% -8.7% -12.5% -8.7% -13.3%
Const. ρ (ρt = ρ̄) -4.4% -5.8% -4.4% -5.6% -4.3% -5.6%

C Demographic Data

Our demographic data are based on the Human Mortality Database (2008). Population of age
j in year t is determined by four factors: (i) an initial population distribution in year 0, (ii)
age- and time-specific mortality rates, (iii) age- and time-specific fertility rates and (iv) age- and
time-specific migration rates. We describe here how we model all of these elements and then
briefly compare results of our demographic predictions with those of United Nations (2007).
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Figure 8: Sensitivity Analysis with respect to σ: Cross-Sectional Profiles
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(b) Assets
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(c) Labor Supply
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(d) Wages
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Notes: Model and data profiles for consumption, assets, labor supply and wages. The model profiles

are for values of σ equal to 1, 2 (our benchmark value) and 3. All profiles are cross-sectional profiles

in 1990, except for the asset profile, which is for 1995. Consumption, asset and wage profiles are

normalized by their respective means. Hours data are normalized by 76 total hours per week.

Data Sources: Based on CEX consumption data collected from Aguiar and Hurst (2009), SCF net

worth data obtained from Bucks et al. (2006), hours worked data from McGrattan and Rogerson

(2004) and PSID wage data.

13



Figure 9: Sensitivity Analysis with respect to σ: Aggregate Variables for the Constant
Contribution-Rate Scenario
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Notes: Rate of return to physical capital, average hours worked of the working-age population, average

human capital per working hour and growth of GDP per capita in the constant contribution-rate social-

security scenario for two model variants and three different values of σ. “endog. h.c.”: endogenous

human-capital model. “exog. h.c.”: exogenous human-capital model.

Initial Population Distribution

We collect the age- and time-specific population data for the period 1950− 2004.

Mortality Rates

Our mortality model is based on sex-, age- and time-specific mortality rates. To simplify nota-
tion, we suppress a separate index for sex. Using data from 1950− 2004, we apply a Lee-Carter
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Figure 10: Sensitivity Analysis with respect to σ: Aggregate Variables for the Constant
Replacement-Rate Scenario
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Notes: Rate of return to physical capital, average hours worked of the working-age population, average

human capital per working hour and growth of GDP per capita in the constant replacement-rate social-

security scenario for two model variants and three different values of σ. “endog. h.c.”: endogenous

human-capital model. “exog. h.c.”: exogenous human-capital model.

procedure (Lee and Carter 1992) to decompose mortality rates as

ln(1− φt,j) = aj + bjdt, (9)

where aj and bj are vectors of age-specific constants, and dt is a time-specific index that equally
affects all age groups. We assume that the time-specific index, dt, evolves according to a unit-root
process with drift,

dt = χ+ dt−1 + ϵt. (10)
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Figure 11: Sensitivity Analysis with respect to σ: Consumption-Equivalent Variation of Agents
Alive in 2005

(a) Constant Contribution-Rate Scenario
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Notes: Consumption-equivalent variation (CEV) in the two social-security scenarios for three different

values of σ. “endog. h.c.”: endogenous human-capital model. “exog. h.c.”: exogenous human-capital

model.

The estimate of the drift term is χ̂ = −1.2891. We then predict mortality rates into the future
(until 2100) by holding âj, b̂j and χ̂ constant and setting ϵt = 0 for all t. For all years beyond
2100, we hold survival rates constant at their respective year 2100 values. Figure 12 shows the
corresponding path of life expectancy at birth.

Fertility Rates

Fertility in our model is age and time specific. For our predictions, we assume that age-specific
fertility rates are constant at their respective year 2004 values for all periods 2005, . . . , 2100.
For periods after 2100, we assume that the number of newborns is constant. Because the U.S.
reproduction rate is slightly above replacement levels, this implies that the total fertility rate
is slightly decreasing each year from 2100 onwards, until approximately year 2200, when the
population converges to a stationary distribution.

Population Dynamics

We use the estimated fertility and mortality data to forecast future population dynamics. The
transition of the population is accordingly given by

Nt,j =

{
Nt−1,j−1φt−1,j−1 for j > 0∑J

i=0 ft−1,iNt−1,i for j = 0,
(11)

where ft,j denotes age- and time- specific fertility rates. Population growth is then given by

nt =
Nt+1

Nt
− 1, where Nt =

∑J
j=0Nt,j is total population in t.
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Figure 12: Life Expectancy at Birth
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Notes: Our own predictions of life expectancy at birth based on Human Mortality Database (2008).

Migration

Migration is exogenous in our economic model. Setting migration equal to zero would lead us to
overestimate future decreases in the working-age population ratio and to overstate the increases
in old-age dependency. We therefore restrict migration to ages j ≤ 15, such that migration plays
a similar role as fertility in our economic model. This simplifying assumption allows us to treat
newborns and immigrants alike. We compute aggregate migration from United Nations (2007)
and distribute age-specific migrants in each year equally across all ages 0, . . . , 15.

Evaluation

Figures 13-14 display the predicted working-age population and old-age dependency ratios, ac-
cording to our population model and according to United Nations (2007). Compared to this
benchmark, our population model is close to the UN but predicts a slightly stronger decrease of
the working-age population ratio and a correspondingly stronger increase of the old-age depen-
dency ratio until 2050.

D Computational Appendix

D.1 Household Problem

To simplify the description of the solution of the household model for given prices (wage and
interest rate), transfers and social-security payments, we focus on steady states and therefore
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Figure 13: Working-Age Population Ratio
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Notes: Population model: our own predictions of the working-age population ratio based on Human

Mortality Database (2008). UN data: working-age population ratio according to United Nations

(2007).
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Figure 14: Old-Age Dependency Ratio
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Notes: Population model: own predictions of the old-age dependency ratio based on Human Mortality

Database (2008). UN data: old-age dependency ratio according to United Nations (2007).

drop the time index t. Furthermore, we focus on a de-trended version of the household problem
in which consumption c, assets a, wages w and transfers, tr, are transformed into c̃ = c

A
, ã = a

A
,

w̃ = w
A

and t̃r = tr
A
, where A is the technology level growing at the exogenous rate g.3 Other

variables are not transformed because they are already stationary.
To understand our transformations of the value functions, notice that utility in the last

period, period J , takes the form

u(cJ , 1− eJ − ℓJ) = u(cJ , 1) = Aϕ(1−σ)u(c̃), (12)

Observe that the homotheticity of the utility function is inherited by the value function in period
J and in all other periods. We consequently adjust the discount factor to β̃ = βφ(1 + g)ϕ(1−σ).

To understand the transformation of the budget constraint, notice that during the retirement
period, the budget constraint is

at+1,j+1 = (at,j + trt)(1 + rt) + ρtwt+jr−jh̄t+jr−j
st,j

jr − 1
− ct,j. (13)

Division by the trend component A then gives

ãt+1,j+1 =
1

1 + g

(
(ãt,j + t̃rt)(1 + rt) + ρtw̃t+jr−j(1 + g)jr−jh̄t+jr−j

st,j
jr − 1

− c̃t,j

)
.

3These transformations are made for convenience, to simplify the structure of our computer code.
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The term (1+ g)jr−j reflects the fact that pension income in the US is only indexed to inflation
and not to growth of nominal wages.

Taking corresponding adjustments to the budget constraint during the working period, the
de-trended version of the household problem is then given by

V (ã, h, s, j) = max
c̃,ℓ,e,ã′,h′,s′

{
u(c̃, 1− ℓ− e) + β̃V (ã′, h′, s′, j + 1)

}
s.t.

ã′ =
1

1 + g

(
(ã+ t̃r)(1 + r) + ỹ − c̃

)
ỹ =

{
ℓhw̃(1− τ) if j < jr

ρw̃jr(1 + g)jr−jh̄jr
sjr
jr−1

if j ≥ jr

h′ = g(h, e) (14)

s′ = s+ ℓ
h

h̄
(15)

ℓ ∈ [0, 1], e ∈ [0, 1].

Here, g(h, e) is the human-capital technology.
Using the budget constraints, now rewrite the above as

V (ã, h, s, j) = max
c̃,ℓ,e,ã′,h′

{
u(c̃, 1− ℓ− e) + β̃V

(
1

1 + g

(
(ã+ t̃r)(1 + r) + ỹ − c̃

)
, g(h, e), s+ ℓ

h

h̄
, j + 1

)}
s.t.

ℓ ≥ 0.

In the above, we have also replaced the bounded support of time invested and leisure with a
one-side constraint on ℓ because the upper constraints, ℓ = 1, respectively e = 1, and the lower
constraint, e = 0, are never binding due to Inada conditions on the utility function and the
functional form of human-capital technology (see below). Recall that ℓ = 0 for j ≥ jr.

Denoting by µℓ the Lagrange multiplier on the inequality constraint for ℓ, we can write the
first-order conditions as

c̃ : uc̃ − β̃
1

1 + g
V ′
ã′(·) = 0 (16a)

ℓ : − u1−ℓ−e + β̃

[
hw̃(1− τ)

1

1 + g
V ′
ã′(·) + V ′

s′(·)
h

h̄

]
+ µℓ = 0 (16b)

e : − u1−ℓ−e + β̃geV
′
h′(·) = 0 (16c)
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and the envelope conditions as

ã : Vã(·) = β̃
1 + r

1 + g
V ′
ã′(·) (17a)

h : Vh(·) =

{
β̃
(
ℓw̃(1− τ) 1

1+g
V ′
ã′(·) + ghV

′
h′(·) + V ′

s′(·)ℓ 1h̄
)

if j < jr

β̃V ′
h′(·)gh if j ≥ jr

(17b)

s : Vs(·) =

{
β̃V ′

s′(·) if j < jr

β̃
(
V ′
s′(·) + ρw̃jr(1 + g)jr−jh̄jr

1
jr−1

1
1+g

V ′
ã′

)
if j ≥ jr

(17c)

Note that for the retirement period, i.e., for j ≥ jr, equations (16b) and (16c) are irrelevant.
From (16a) and (17a) we obtain

Vã = (1 + r)uc̃ (18)

and, using the above in (16a), the familiar inter-temporal Euler equation for consumption follows
as

uc̃ = β̃
1 + r

1 + g
uc̃′ . (19)

From (16a) and (16b) we get the intra-temporal Euler equation for leisure,

u1−ℓ−e = uc̃h

(
w̃(1− τ) + (1 + g)

V ′
s′

V ′
ã′

1

h̄

)
+ µℓ. (20)

From the human capital technology (3) we further have

ge = ξψ(eh)ψ−1h (21a)

gh = (1− δh) + ξψ(eh)ψ−1e. (21b)

We loop backwards on j from j = J − 1, . . . , 1 by taking an initial guess of [c̃J , hJ ] as given
and by initializing Vã′(·, J) = Vh′(·, J) = Vs′(·, J) = 0. During retirement, that is, for all ages
j ≥ jr, our solution procedure is standard backward shooting using the first-order conditions.
However, during the period of human-capital formation, that is, for all ages j < jr, the first-order
conditions would not be sufficient if the problem is not a convex-programming problem. Thus,
our backward-shooting algorithm will not necessarily find the true solution. In fact, this may
be the case in human-capital models such as ours because the effective wage rate is endogenous
(it depends on the human-capital investment decision). For a given initial guess [c̃J , hJ ], we
therefore first compute a solution and then consider variations of initial guesses of [c̃J , hJ ] on a
large grid and check whether we converge to the same unique solution. In all of our scenarios,
we never find any multiplicities. The details of our steps are as follows:

1. In each j, hj+1, Vã′(·, j + 1), Vh′(·, j + 1), and Vs′(·, j + 1) are known.

2. Compute uc̃ from (16a).

21



3. For j ≥ jr, compute hj from (3) by setting ej = ℓj = 0 and by taking hj+1 as given.
Compute c̃j directly from Equation (24) below.

4. For j < jr:

(a) Guess hj

(b) Compute ej from (3) as

ej = 1
hj

(
hj+1−hj(1−δh)

ξ

) 1
ψ
. (22)

(c) Compute lcrj =
1−ej−ℓj

c̃j
, the leisure-to- consumption ratio, from (20), as follows:

From our functional-form assumption on utility, marginal utilities are given by

uc̃ =
(
c̃ϕ(1− ℓ− e)1−ϕ

)−σ
ϕc̃ϕ−1(1− ℓ− e)1−ϕ

u1−ℓ−e =
(
c̃ϕ(1− ℓ− e)1−ϕ

)−σ
(1− ϕ)c̃ϕ(1− ℓ− e)−ϕ

Hence, we obtain from (20) the familiar equation:

u1−ℓ−e
uc̃

= h

(
w̃(1− τ) + (1 + g)

V ′
s′

V ′
ã′

1

h̄

)
=

1− ϕ

ϕ

c̃

1− ℓ− e
,

and therefore:

lcrj =
1− ej − ℓj

c̃j
=

1− ϕ

ϕ

(
h

[
w̃(1− τ) + (1 + g)

V ′
s′

V ′
ã′

1

h̄

])−1

. (23)

(d) Next, compute c̃j as follows. Notice first that one may also write marginal utility
from consumption as

uc̃ = ϕc̃ϕ(1−σ)−1(1− ℓ− e)(1−σ)(1−ϕ). (24)

Using (23) in (24), we then obtain

uc̃ = ϕc̃ϕ(1−σ)−1(lcr · c̃)(1−σ)(1−ϕ)

= ϕc̃−σ · lcr(1−σ)(1−ϕ). (25)

Because uc̃ is given from (16a), we can now compute c̃ as

c̃j =

(
uc̃j

ϕ · lcr(1−σ)(1−ϕ)j

)− 1
σ

. (26)

(e) Given c̃j, ej, compute labor, ℓj, as

ℓj = 1− lcrj · c̃j − ej.
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(f) If ℓj < 0, set ℓj = 0 and recompute c̃j from (24) as

c̃ =

(
uc̃

ϕ(1− e)(1−σ)(1−ϕ)

) 1
ϕ(1−σ)−1

.

(g) Finally, use (21a) in (16c) and define the resulting equation as a distance function
f(h). We solve for the root of f to obtain hj by a non-linear solver iterating steps 4a
through 4g until convergence. The following proposition establishes that this solution
is unique.

Proposition 1. For given values of human capital next period, hj+1, and marginal
values next period, V ′

ã′, V
′
h′ and V

′
s′, a solution hj to the first-order conditions (16a),

(16b), (16c), and the human-capital constraint (3) exists and is unique.

We present the proof of Proposition 1 after the description of our algorithm.

5. Update as follows:

(a) Update Vã using either (17a) or (18).

(b) Update Vh using (17b).

(c) Update Vs using (17c).

Next, loop forward on the human-capital technology (3) for given h0 and {ej}Jj=1 to compute
an update of hJ denoted by hnJ . Compute the present discounted value of consumption, PV C,
and, using the previously computed values {hnj }Jj=1, {ℓnj }Jj=1, and {pnj }Jj=jr compute the present
discounted value of income, PV I. Use the relationship

c̃n0 = c̃0 ·
PV I

PV C
(27)

to form an update of initial consumption, c̃n0 , and next use the Euler equations for consumption
to form an update of c̃J , denoted as c̃nJ . Define the distance functions

g1(c̃J , hJ) = c̃J − c̃nJ (28a)

g2(c̃J , hJ) = hJ − hnJ . (28b)

In our search for general-equilibrium prices, constraints of the household model are occasionally
binding. Therefore, solution of the system of equations in (28) using Newton-based methods,
e.g., Broyden’s method, is instable. We solve this problem by a nested Brent algorithm, that is,
we solve two nested univariate problems, an outer one for c̃J and an inner one for hJ .

Check for uniqueness: Observe that our nested Brent algorithm assumes that the functions
in (28) exhibit a unique root. What is computed above is a candidate solution under the
assumption that the first-order conditions are necessary and sufficient. As a consequence of
potential non-convexities of our programming problem, first-order conditions may, however, not
be sufficient, and our procedure may therefore not give the unique global optimum. To system-
atically check whether we also always converge to the unique optimum, we fix, after convergence
of the household problem, a large box around the previously computed [c̃J , hJ ]. Precisely, we
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choose as boundaries for this box ±50% of the solutions in the respective dimensions. For these
alternative starting values, we then check whether there is an additional solution to the system
of equations (28). For all of these combinations, our procedure always converged, and we never
detected any such multiplicities.

Proof of Proposition 1. Consider the cases with and without a binding constraint on labor supply
separately.

1. Consider an interior solution for labor supply, i.e., ℓj > 0 and µℓ = 0. In this case, one can
find the values of ej and hj satisfying the first-order conditions independently of cj and lj.
Combining the first-order conditions for labor supply (16b) and human-capital investment
(16c) yields

ejhj =

(
ξψ(1 + g)Vh′(·)

w̃(1− τ)Vã′(·) + (1 + g)V ′
s′

1
h̄

) 1
1−ψ

. (29)

Note that the term on the right-hand side does not depend on hj. Finally, substituting
ejhj in Equation (3) gives

hj+1 = hj(1− δh) + ξ

(
ξψ(1 + g)Vh′(·)

w̃(1− τ)Vã′(·) + (1 + g)V ′
s′

1
h̄

) ψ
1−ψ

. (30)

Clearly, this equation has a unique solution for hj. Given this value for hj, Equation (29)
determines a unique value for ej.

2. Consider a binding constraint on labor supply, i.e., ℓj = 0 and µℓ > 0. In this case,
the values of ej and hj satisfying the first-order conditions depend on cj. The first-order
condition for human-capital investment (16c) reads as

(1− ϕ)c̃ϕ(1−σ)(1− e)(1−ϕ)(1−σ)−1 = β̃ξψeψ−1hψV ′
h′ (31)

, and the first-order condition for consumption is given by

ϕc̃ϕ(1−σ)−1(1− e)(1−ϕ)(1−σ) = β̃
1

1 + g
V ′
ã′ . (32)

Combining these two equations to eliminate c yields

h = e
1−ψ
ψ (1− e)

1
ψ

σ
ϕ(1−σ)−1Φ

1
ψ , (33)

where

Φ = (1− ϕ)

(
ϕβ̃

1

1 + g
V ′
ã′

) ϕ(1−σ)
ϕ(1−σ)−1

(β̃ξψV ′
h′)

−1. (34)

The (e,h) combination we are seeking needs to satisfy Equation (33) and the human-capital
constraint (3). This means we have a system of two equations in the two unknowns, e and
h. Because both equations (33) and (3) are continuous, and the admissible values of e are
in the range 0 ≤ e ≤ 1,
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• existence of a solution follows from the fact that in Equation (33), h = 0, if e = 0,
and h→ ∞, if e→ 1 because ϕ(1−σ) < 1; and in Equation (3), h = h′/(1− δh) > 0,
if e = 0, and h is finite if e = 1.

• uniqueness of the solution to these two equations follows because in the relevant range
of e, ∂h

∂e
< 0 in Equation (3) by the implicit-function theorem, and ∂h

∂e
> 0 in Equation

(33) because the derivative of h w.r.t. e in Equation (33) is

∂h

∂e
=

(
1− ψ

ψ
e

1−ψ
ψ

−1(1− e)
1
ψ

σ
ϕ(1−σ)−1 − 1

ψ

σ

ϕ(1− σ)− 1
e

1−ψ
ψ

−1(1− e)
1
ψ

σ
ϕ(1−σ)−1

−1

)
Φ

1
ψ ,

,

and the second term in brackets is positive for ϕ(1− σ) < 1.

D.2 The Aggregate Model

For a given r×1 vector Ψ⃗ of structural model parameters, we first solve for an “artificial” initial
steady state in period t = 0, which gives initial distributions of assets and human capital. We
thereby presume that households assume prices to remain constant for all periods t ∈ {0, . . . , T}
and are then surprised by the actual price changes induced by the transitional dynamics. Next,
we solve for the final steady state of our model, which is reached in period T and supported by our
demographic projections (see Appendix C). For both steady states, we solve for the equilibrium

of the aggregate model by iterating on the m× 1 steady-state vector P⃗ss = [p1, . . . , pm]
′. In our

case, m = 4. p1 is the capital intensity, p2 are transfers (as a fraction of wages), p3 are social-
security contribution (or replacement) rates, and p4 is the average (hours weighted) human-

capital stock. Notice that all elements of P⃗ss are constant in the steady state.
The solution for the respective initial and final steady states of the model involves the fol-

lowing steps:

1. In iteration q for a guess of P⃗ q
ss solve the household problem.

2. Update variables in P⃗ss as follows:

(a) Aggregate across households to obtain aggregate assets and aggregate labor supply
to form an update of the capital intensity, pn1 .

(b) Calculate an update of bequests to get pn2 .

(c) Using the update of labor supply, update social-security contribution (or replacement)
rates to get pn3 .

(d) Use labor supply and human-capital decisions to form an update of the average
human-capital stock, pn4 .

3. Collect the updated variables in P⃗ n
ss and notice that P⃗ n

ss = H(P⃗ss) where H is a vector-
valued non-linear function.
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4. Define the root-finding problem G(P⃗ss) = P⃗ss − H(P⃗ss), and iterate on P⃗ss until conver-
gence. We use Broyden’s method to solve the problem and denote the final approximate
Jacobi matrix by Bss.

Next, we solve for the transitional dynamics by the following steps:

1. Use the steady-state solutions to form a non-linear interpolation to obtain the starting
values for the m(T − 2) × 1 vector of equilibrium prices, P⃗ = [p⃗′1, . . . , p⃗

′
m]

′, where pi, i =
1, . . . ,m are vectors of length (T − 2)× 1.

2. In iteration q for guess P⃗ q, solve the household problem. We do so by iterating backwards
in time for t = T − 1, . . . , 2 to obtain the decision rules and forward for t = 2, . . . , T − 1
for aggregation.

3. Update variables as in the steady-state solutions, and denote by
˜⃗
P = H(P⃗ ) them(T−2)×1

vector of updated variables.

4. Define the root-finding problem as G(P⃗ ) = P⃗ − H(P⃗ ). Because T is large, this problem
is substantially larger than the steady-state root-finding problem, and we use the Gauss-
Seidel-Quasi-Newton algorithm suggested in Ludwig (2007) to form and update guesses
of an approximate Jacobi matrix of the system of m(T − 2) non-linear equations. We
initialize these loops with a scaled-up version of Bss.

D.3 Calibration of Structural Model Parameters

We split the r × 1 vector of structural model parameters, Ψ⃗, as Ψ⃗ =
[
(Ψ⃗e)′, (Ψ⃗f )′

]′
. Ψ⃗f is a

vector of predetermined (fixed) parameters, whereas the e×1 vector Ψ⃗e is estimated by minimum
distance (unconditional matching of moments using e moment conditions). Denote by

ut(Ψ⃗
e) = yt − f(Ψ⃗e) for t = 0, . . . , T0 (35)

the GMM error as the distance between actual values, yt, and model-simulated (predicted)

values, f(Ψ⃗e).
Under the assumption that the model is correctly specified, the restrictions on the GMM

error can be written as
E[ut(Ψ⃗

e
0)] = 0, (36)

where Ψ̃e
0 denotes the vector of true values. Denote sample averages of ut as

gT0(Ψ⃗
e) ≡ 1

T0 + 1

T0∑
t=0

ut(Ψ⃗
e). (37)

We estimate the elements of Ψ⃗e by setting these sample averages to zero (up to some tolerance
level).

In our economic model, only two parameters are pre-determined, and we therefore have

Ψ⃗f = [σ, h0]
′ . (38)
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The vector Ψ⃗e is given by
Ψ⃗e =

[
g, α, δ, β, ϕ, ψ, ξ, δh

]′
. (39)

We estimate the structural model parameters using data from various sources for the period
1960, ..., 2004. Hence T0 = 44. The parameters Ψ⃗e

1 = [g, α]′ are directly determined using NIPA
data on GDP, fixed assets, wages and labor supply. The remaining structural model parameters,
Ψ⃗e

2 = [δ, β, ϕ, ψ, ξ, δh]′ are estimated by simulation. Our calibration targets are summarized in
Table 7.

Table 7: Calibration Targets

Parameter Target Moment

Ψ⃗f

σ predetermined parameter
h0 predetermined parameter

Ψ⃗e
1

gA growth rate of Solow residual 0.018
α share of wage income 0.33

Ψ⃗e
2

δ investment output ratio 0.2
β capital output ratio 2.8
ϕ average hours worked 0.33
ψ, ξ, δh coefficients of wage polynomial (from PSID)

Determining the subset of parameters Ψ⃗e
2 along the transition is a computationally complex

problem that we translate into an equivalent simple problem. The point of departure of our
procedure is the insight that calibrating the model for a steady state is easy and fast. However,
simulated steady-state moments may differ quite substantially from simulated averages along
the transition, even when the steady state is chosen to lie in the middle of the calibration period,
in our case, year 1980. We therefore proceed as follows.

1. Initialization: Choose a vector of scaling factors, s⃗f , of length e2 that appropriately scales
the steady-state calibration targets (see below).

2. Calibrate the model in some steady-state year, e.g., 1980, by solving the system of equa-
tions

ȳe2,i
sfi

− f e,ss2,i (Ψ⃗) (40)

for all i = 1, . . . , e2 to get
ˆ⃗
Ψe

2. Here, ȳe2,i is the average of moment i in the data for the
calibration period (1960-2004), e.g., the investment-output ratio for i = 1.

3. For the estimated parameter vector,
ˆ⃗
Ψe

2, solve the model along the transition.

4. Compute the relevant simulated moments for the transition, f e2 (Ψ⃗).
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5. Update the vector of scaling vectors as

sfi =
f e2,i(Ψ⃗)

f e,ss2,i (Ψ⃗)
(41)

for all i = 1, . . . , e2.

6. Continue with step 2 until convergence on scaling factors (fixed-point problem).

We thereby translate a complex root-finding problem into a combination of a simple root-
finding problem (steady- state calibration) and a fixed-point iteration on scaling factors. Because
scaling factors are relatively insensitive to Ψe

2, convergence is fast and robust. The resulting
scaling factors range from 0.94 to 1.29, which means that differences between simulated moments
in the artificial steady-state year (1980) and averages during the transition are large (up to 30%).
This also implies that calibrating the model in some artificial steady-state year would only lead
to significantly biased estimates of structural model parameters.
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